五次方程式の超冪根による解法

趣味ブログ

カセットテープを分解して回路の仕組みとか

好きなこと ひたすらのっける

1の原始根を添加する理由

係数体からスタートして、すべての1のP乗根を添加するという行為について


なぜそんなことをするのか? そんなことをしてもいいのか?という疑問が湧く


例えば2の3乗根 ₃√2 を添加した場合、任意性があって₃√2ω、₃√2ω²も2の3乗根のうちに含まれる 


どれを指定して添加しているのかがわからない。なので最初に1の3乗根ωを体Kにいれといてやると
すべて体のKに含まれるから任意性が排除されて、読み手がわかりやすくなる。


そういう意見もあるのだけれど


ガロアの論文によると 1のp乗根は


ガウスの証明により、すべて有理数と平方根で表現されている。


ゆえにPよりも次数が低い拡大であって、添加しても方程式の群を縮小することはないから


って言ってる。


そもそもやりたいことって、既約の方程式をガロア群という概念でカテゴリ分けすることなので。


有理数体に1のp乗根を添加した基礎体Kを考えて、1のp乗根はxの置き換えで変化しない有理数の様に扱ったとしても


さっき言った


既約の方程式をガロア群という概念でカテゴリ分け できるなら問題ないわけで。




もっと深く
ガロアの論文を読むと


すべての補助方程式の根を添加すると、正規部分群に分解されるとあるので、1のn乗根は群がn個に分解するときに添加するもの。
あるいはすべての補助方程式の根を添加すると、必然的に1のn乗根は体に添加されます。


どういうことかというと、例えば₃√2を添加するときに、共役の₃√2ω と₃√2ω^2も添加するので ₃√2で₃√2ωを割るとωが出現します。


なので先に基礎体に1のn乗根を添加する必要はなく、ガロアの言う通りすべての補助方程式の根を添加すると正規部分群に縮小することを繰り返していけばいいです。


そして恒等置換εまで縮小したとき、ガロア方程式のⅤの値が求まるので、元の方程式の解 がⅤの有理数係数の多項式ですべて求まるのです。







ガロアの視点から1のn乗根を添加するタイミングと、志賀本のタイミングとでは


前者は群の縮小を意識しているのに対して、後者は正規拡大を意識している。


時代が前後するガロア本だと、ここら辺がきつい。 2項拡大だとか、クンマー拡大だとか


そもそもクンマーはガロアの時代にいない。


べき根拡大についても無条件でx^n-a を最小多項式とする拡大を考えているので、面食らってしまうだろう。




ガロアの言ってることがわかるようになる→高校生向けのガロア本の証明がわかる→可解な既約五次方程式の見分け方がわかる。


の流れになっている。 故にガロア理論の証明に固執することは本質ではない。


なぜならガロア理論の証明とは、


☆1のp乗根を添加した基礎体から初めて、
べき根拡大で代数的に解ける⇒正規部分群の縮小が対応している。の証明っていうか力説であって


1のp乗根を添加した基礎体から初めて、
べき根拡大を繰り返すと、いつかは代数的に解けるでしょっていう考え方に対する疑問に答えるものではないから。


ガロアの言っていることがわかれば、そこから演繹的に流れがすべてわかる事になる。
あと、証明を暗記しても忘れる。


ガロアの言っていることがわかるようになるには


口語で書いてある。


当時のガロアの考えに基づいて、ガロア群とは何か説明している。


可解な既約五次方程式とそうでない既約五次方程式の違いについて気づく方向性に向かっている。
そういう本がいいと思います